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FOREWORD

This paper examines & class of variable metric msthods of minimising
unconstrained functions that arise when the Sequential Unconstrained Minimi-
zation Technique (SUMT) is applied to general nonlinear programming prob-
lems. The methods considered require a knowledge of only the tirst derivatives
of e unction o be mminimized bui proceed to estimate the inverse hessizn of
aecond partial derivatives during the course of a series of one-dimensional
minimizations.

Three ncw algorithms and the Fletcher-Powell-Davidon algorithm are
derived using simple properties of a general solution to the problem of esti-
mating the ipverse hessian. Results of numerical calculations for several
examples show the relative merits of the new algorithms compared tc several
in currcat use,

Nicholos M. Smith
Head, Advanced Research Department
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ABSTRACT

Two basic spproaches to the generation of conjugate di-
reciions aie conwidered for the problem oi uncoustralned minimi-
zation of quadratic functions. The first approach resuits in a
projected gradiest algorithm that gives “i atep” convergence for &
quadratic. The second approach is based on the generalized solution
of a sot of undetermined lincar equatious, various forma of which
generate various new algorithms all giving n-step coavergence.
Oue of the's is the Fletcher amd Powell modification of Davidon's
method.

Results of an extensive numerical comparison of these meth-
ods with the Newton-Rupisson msthod apd ¥letcher-Reeves method
are included.
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1. INTRODUCTION

General

Let A be an n x n positive definite symmetric matrix; let b be an arbitrary
n vector and ¢ an arbitrary constant. o

Consider the problem of finding the minimizing 1 veclor 1 = x*, for &
quadratic function [(x) defined by '

fx) = Mr'Axsbxac (1)

The methods considered here, called variously “variabie metric,”’ “quasi-
Newton,”?" or “large-step gradient methods,** consist of selécting ant # x n
matrix H, at stage i and forming the direction d, = Hyz where g, is the gragdient
of f(x)at 5;. A step of length o, is chosen so that x, + ¢4, 15 the minimum
of flx, +ad ), le., witere dja,; =0. H, is then updated using (z,,; - x,) and
(g;,y - g). U H, =1thig i5 the method of steepest descent. The Newton-
Raphson method s obtained with H, = A-L wever, on a nonguadratic func.
tion A or its equivalent the hessian of f(1) 1 .y not be available, It is then of
general interest to esamine methods that utiiize only first-derivative informa-
tion and that in addition may estimate A.

Since, a8 is reviewed in Sec 2, a quadratic can be minimized in n steps
if dg, d), d,_; are conjugate directions, this paper studies a class of H; matrices
that will generate conjuga.2 directions. In Sec 3, H, is chosen as a projection
matrix and, in Sec 4, H, is chosen as a solutiun to the equation H\Y, = §,. The
Fletcher-Powell-Davidon® algorithm is sho 1\ to be a member of this latter
class. A numerical comparison of several n w algorithms with the Fletcher-
Powell-Davidon and the Fletcher-Reeves algorithm is given in Sec &,

e




Notation

At iteration 1 the following column vectors oceur:
x is the current solution,
d, is the gradient of [(x) at x.

H, is the current dircction matrix or metrie,
d, iz the search direction from 1, dd, = 1.
$, = 5,;— & =¢d ig the step in 1,

Yo T G~ 8 T As, 18 the slep in g,,

o, is the step length, a negative scalar.

N denotes g, transpose, a row vector.

§, = Usgy sy v vy 8,1 ) denotes a matrix with columns sg,. .., 5,
and also without ambiguity {sy, s, ..., s, ] denotes the sub-
space spanned by vectors sy, sy, . .. 4 S, .

Y, = lygs y1»- -+ 0+ y,q ) denotes an nsi matrix with columns y, .

2. PROPERTIES OF CONJUGATE DIRECTIONS

It is convenient to isolate the properties of conjugacy from the problem
of generating conjugate directions as discussged in iater sections,

Definition

A set of # independent directic a3 dy, 4, ..., d, | are conjugate with
respect to a positive-definite symmetric matrix A if"
dl'-\d‘ ) Qutdjsn- 1
dAd, ~ 0 D-tzn 1

(2)

Any point x € E7 can be represented in verms of dy, ... ,d, ; as follows:
Let

then
A £'Ad, d)Ad,

i

Similarly the quadratic f(x) = '5x ‘Ax + x'b + ¢ can be de~owposed into n in-
dependent terms,
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Thus any gquadratic can be minimized in » steps by minimizing the n terma
independently.

Defire n x i matrices Y, and §,
Y. - 1)0' lev‘ﬂyh)\

S. [50: LITRERER 5 1]

Since 5, = x,; — %,. ¥, = @&, — 8 and g = Az + b then,

y, = As,

and
(4)

Yis, « 8y -0 lgugygn-1
when the steps sy, 5;, . . . are conjugate,
Now consgider two simple results that hold for independent directioi. s 4;.
Lemma 1, The point 1, = 1y + Iy &,d, is the minimum of f(x) over the
subspace (dy,d;,...,d,,]if andonly if S/g =0.
Proof: U [(x,)is a minimum in direction d; then

lafte)l/day - dfq, - 0 for 0gj<i-1, te, S8, =0

Since f(x) is strictly convex let § = x, + L)X +jdy s then f(3,) = f(x,) +
g’ (i, = x,), equality occurring only when %, = r,.

I S'g =0,1e., d'g;=0for 0 <j <i~1;then ¢ #0 implies f(f,) > f(x;),
and f(x,) is the minimum.

Lemma 2, Suppose at 5, S8, =01 s satisfies Y5, =0and s, =0,
then §,,,8,; =0.

Proof: On a quadratic function Y's, = Sy, = §S,'(g,2 - g,1) = $,8.0 =0. K
in addition sg,,, =0, then by definition of S,,;, S,,18,,1=0.

Lemma 1 provides a simple characterization of the progress at stage i ,
and lemma 2 indicates that stepping to a minimum in a direction orthogonal to
the previous gradient changes locates the minimum over a larger subspace.
Note that in neither case was conjugacy of the d, required, only independence.
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3. THE PROJECTED GRADIENT ALGORITHM

As Eq 4 shows, one way of generating conjugate directions is to make
successive steps orthogonal to previcus gradient changes. It is remarkable
that this can be done on arbitrary functions f(x) and produces a weaker form
of conjugacy discussed elsewhere.” A result similar to Theorem 1 has been
given independently by Goldfarb,*

Theorem 1

Let R be a symmetric positive definite matrix and define s;, y;, by the

recursion

i =0 Hg = I
iy RY Y 1YY (8)
P20 H = 1o RYJUYRY) Y,
fix;4q) = min[[(x, + oHRg)) (8)
i
541 - [S‘, XHI"A) (7)
Yoo = Yo g0 -8 (8)

then either lor some j < n
Hig =0 li; 0 and g =0 15~2

or if the recursion continues to j = n

Hy =0 g, =0, 1x =31

Proof: U g, =0, then Hy =land 1, = 1*. If g, #0, then d; = H,Rg, # 0. Equa-
tion 6 requires dgg =90, i.e., &) = —dggy/dyAd, <0, and consequently both s,
and y, #0. Thus Y| = (y,] and 5; = [s;] both here rank 1,and S/g = sgp =0.

Proceeding by induction, suppose Y, and S, have rank i and S, =0. Then
H, exists and is a projection matrix with properties H} =H;, H/Y, =0. H,RY, =0,
Thus from Eq 5 each new directivn is orthogonal to the columns of Y;.

Now d, = HRg, =0 if and only if g, =0,for if g; #0,thenby Eq 5 ¢, €
[¥gs Yis o+« s Y11 3, iee., for some w, g, = Y,u. However, $j, =0 implies
S;Yw = S/ASw =0for w#0, which contradicts the deliniteness of A. Thus
H,Rg, =0 implies g =0.

Suppose H;Rg, # 0;then Eq 6 requires djg,, =0,1.e., & = —g/RH/g,/
g,'RHfA 8, <0 since g is not a linear combination of y,, y;,...,y,_;. Thuss,

b el




LA RS R A

R T N Y

™ rwmwnwrg e T 'mz!-"gfﬂm'p‘f ﬂr mmf:fm1w

- ‘F___'.«:m"-‘nwwm* T ) W

ol e .

i

[}
b
r"
3
o
o
[} N
f
b
i

and y, are nonzero, The direction choice implies Y5, =0 and a5 a result
Y,,1,§,.; have rank i + 1, Otherwise for some w#0,y, =VYwand Sy, = §/
ASw = 0 a8 before. Similarly if s, = Su #0, Y5, = SASw =0 imples w =0.

The recursion terminates for some j <n when HRg, =0, which requires
g = ¢ and % = 1,

If the recursion coatinues to i = u, as is likely, then, since Ly induction
Y, S,have rank n and S.g, = 0, it follows that g, =0, 5, = x*, and H, =0,

A convenient algorithm can be found by application of the bordered in-
verse lemma in App A, to

HR = R-RY(YRY)IVR

Algorithm 1

ver = Hi- My Yy 76 My ) ©)

Then Eq 6 is replaced by
flxg o) = uain[[\‘x. +aH gl
i

(10)

Corollary 1.1, ¥ VY5, =0fori =1,2,,..,j,thensy,s;,..., s are
conjugate.

Proof: Ys, =0implies sgAs = s/As, =0 for k < i,ie., sAs, =0
0=<i#kzj,

R allows a choice other than| for the initial Hy, a property that apparently
minimizes round-off errors.’ However, Rcan also be used to take advantage
of any partial inverse of A.

Suppose A has a partitioned form

Al "‘12)
A -
("21 Az
Assume A;] 18 2 known r x r block and set
A7l o)
R - ( o o) Ho (11)

Inserting this in Eq 10, 4 simple calculation shows that
oy = -agHoRg agtigAtlgeg » -1




and that

_ o e
w2 IR) )

Thus the top r components of g; are zero after this “partial inverse” step.

Let s, 5,,...,5 | ber unit vectors of the form s'=(0,0,..,,0,1,0,...,0)
with 1 in tha 1+1th nosition.

Let ¥, = A5, =(A),, A, )'; then clearly 5, and Y, have rank r, and if
@, = g then §'g «0, But these are the inductive hypotheses in Theorem 1 at
the rth stage, which yields,

Corollary 1,2, After the partizl inverse step (Eqs 10 and 11} the projected
gradient algorithm s at stage r with H, defined by

-Gl G G) a

It will terminate in not more than n ~ ¢ further steps,

A more transparent explanation of the restart is to note that if A4, +
Ajad,» =0 where d'=(d/,, d,;), then the top r components of g, are unchanged
from 0. This i8 equivalent to Eq 13, (See App C for an example.)

4. VARIABLE METRIC ALGORITHMS

The class of algorithms in this section are based on the following idea,
H H, satisfies H\Y, =S, and steps s, 5;, ..., 5, were obtained by minimiz-
ing down independent directions, i.e., §/g, =0, then the direction d, = H/g,
-and step 5; =d, are conjugate to sp, 5;,. .., 5. 1, te., ¥/'s; =& Yig =
a5, =0. Clearly if the process continues to stage n, H, = A}, and all the
steps are conjugate. Since g, is orthogonal to the previous n steps it must
be zero.

Now consider the general solution to the equations HY, =§,. This has
the form for arbitrary Z of

By - $Y0 0 ZU-¥ YD (19)

where Y, is the generalized inverse of ¥,.° If ¥, is of rank :, then Y, =
(YY,)'Y, and has the property that Y,Y; is a projection of E" onto {y,,
Yir+ ¥ 1) Inaddition x* = ¥'b minimizes (Y, x~b) ‘(Y x~8),
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Suppose that Y, has rank 1 ; then it will be convenient to define Y} =
{YHY 37 v M where H 14 & positive detinite symmetric matrix, Note that
M, - S50 R0 =Y YD
also satisfies H Y, = §,, that Y, Y* =¥ (Y /'HY,) YH aleo lé & projection matrix,
and that ¢* = Y *b minimizves (Y1-b) H{¥x~b),

Theorem 2, General Variable Metric Algorithm

Let R and H be positive delinite gymmetric matrices and define the
algorithm as {cllows:

fori =0
“U - R ‘15)
fori >0
H, w $Y 4RO =Y ¥ (18)
where
Y® and ¥ have the form (Y HY,) "4 Y 'H am

with H = Ror A-! independently for each term.

ﬁ'ul’ - “&i“ ftx, &tv..”:g‘)
[}

(18)
Vil ™ ‘(Y. ey -y
S =8 ir s (18)
with
Yl - [.81 -“0" Ql .[’I -lo) (20)

Then the algorithm terminates for some + < n when Hjg, =0 implies g, = 0,
7z‘ﬂ=x‘. Ui =n then H,# A~
Proof: If xj # «* then g, # 0. Using Eqs 15, 18, and 20 the {irst step results
inyY, and §, having rank 1 and §,q; =0,
Proceeding by induction, suppose that at stage 1 <, 4, #0,Y, and § have
rank i and ;g = 0. It will be shown that this is true for: + 1.
Computing the direction of search, Hja, = Y*'s/q +(1 = ¥**'Y!)Rg =0 +
U ~HY, (Y/RY)" Y ) Rq, =0 4 and only i H-'Rg, € (ys, ¥}, . .. ,¥,1). Butfor
H=RorH =A-, 83 =0 would require 4, = 0. Thus H/g, #0if 4 #0.




o i

Minimizing at stage +, a, =~ a/Hg, /a/H A, #0 1t and only Uf g/, + 0.
I H=A-"then g/H)g, = giRg, >0. L H =R, ¢/HYy, = aHRH), >0. Thua if g, ¢ 0,
a, #0. By construction, ¥V /(x| =x) w¥'s, =0. This tact, Eq 18, and lemma 2
provide that 5’3, % 0.

Since « #0, x|~ and g, ~g, are nonzero and S0 Y, in Eg 19 will
hive rank 1 ¥ 1. Otherwike y € {yg, 5y, . . ., v,.;] and since ¥z, «3)y =0,
y, =0 and similarly s, = 0, 2 contradiction,

Thus the iteration can only terminate i g, = 0 for which r, = r*; otherwise
it proceeds until i = n, Here, however,S, has rank ¥ and S;g, =0 implies g, : 0
and x, =x* H, = A~} by construction since Y, and S, have rank u.

Since H can be chosen to be A=} or R in Eqs 16 and 17 there are four pos-
sible algorithms in this scheme,

The next corollary allows for the fact that if a restart is used the initial
directions [sg, s, . . . , 5,) are not necessarily conjugite. See Corollaries
1.1 and 2.1, However under normal operations this is the case,

Corollary 2.1, If Y's, =0fori =3,2,...,j<u,thensy,s;,..., 5
are conjugate,

Particular algorithme can be obtained by choosing H differently for each

Y? in Eq 16.

AlEr jthm 2

Choose

H, - SU8v ) 18 4 R Y 8;¥ ) bs)) (21)

" This corresponds to H = A1 in Eq 17. Expanding this formula using the

bordered inverse lemma in App A,
HN‘ - “l ¢ ‘sl - Hl,’lxsl " sl A\‘.‘S‘)‘/y:“ - {I Ay")" (22)
Ho = R

where
A - 8y,

When used in Theorem 2, the projection properties of H, require that Y/s, = 0

and consequently

H, o~ H ools - HyXs) /sy,

T3}

Hy = R

(23)

10
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This particular algorithm 18 due independently to G, P. McCormick. Note
that in general N, is undymmetric,

Algorithm 3
Choose
Ho= SOVRY VDY R R v v RY )Ty ) (24)
This correspondn to H « R throughout Theorem 2. Expinding this formula and
uBlng the prujection properties of #, in the form Vs, = 0,
Mg = o ts -y R0 Y Ay Hyy,

25
by - i {28)
Again H, will be unsymmetric and in particular here H)y, ¥ Hy,.
Algorithm 4
Choose
B, = S{S¥)7V8) o RU- VIYRY VYR (26)

This corresponds to H = A ! in the first Y and H = R in the second Y * of
Eq 16. Expanding H, and using the projection properties of H, in the form
Yis, = S}y =0,

Hop = H - Ha XHp Y2y Hy e 58,780y,

Hy = R (27

This is immediately recognized as Fletcher and Powell's modification of
Davidon's algorithm.® H, 18 symmetric and the search direction H/g, = H g,
as commonly used,

‘As for the projection matrix, lets,, i =0,1,...,r - 1 be the firat r unit
vectors and define Y, = AS,. Then if g, = ¢, given by Eq 12, $,/g, =0 and both
§;, Y, have rank r. A simple calculation shows that for the Fletcher-Powell
algorithm

4l oo
SYE L8ty ( “)’ 0) (28)

Corollary 2,2, After 4 partial inverse step (Eqs 18 and 11) the Fletcher-
Powell-Davidon algorithm can be restarted from the rth stage with

C R el ([ IS B
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It will termindte in not more han n - ¢+ further steps, An example 18 given
in App C.

In principle the gencral vartfable metric method can be considered, All
that i required is that independent directions sy, 5y, . 0., 5,0, Yo Y100 v v 4 Yooy
be found such that for some initial estimate H, =« R, 5,Y,* = R, and §]g, = 0.

A {itth algorithm can b derived analogous to Algorithm 4 by inserting
H = Ainthe firat ¥* of Eq 18 and A"" in the second. Unfortunately 1t dov# not
lead tw a readily computable lormula d8 do the others.

&. NUMERICAL RESULTS

Results of testing these algorithms on nonquadratic functions will now be
given, The numericdl procedure for the geven schemes considered is as follows,
Given f(x), g(x), and possibly A(x), the matrix of second partial deriva-
tives of f(x) evaluated at 1, and starting at x; with Hy = K, the initial mairix,

and normalizing d,,
(a) Find the first local minimum of f(x, + «d,)

HrgY - "5.': fl, o ud) (30)
d, - Hg aia, (31)
(b) Update H, according to the algorithm used.

Algorithm 1, Projected Gradient Method (P-G)

U,y o« H, -G ME ) Ay ) (32)

for + =u, and every n steps H, = R,

Algorithm 2
“s-l BLPEREN ”r‘n)h"hsu (33)

Algorithm 3
Hy Hyo sy Ha Ly YRy Hy ) (34)

12
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Algorithm 4, Fletcher-Powell-Davidon (F.P-D)

Hoog » M- Oy MH ) G H iy e s 0y s {as)

Algorithm 5, Newlon- Raphson (N-R)

Hoox fAl {38)

The program uses & modified Newton- Raphson step when it appears that
A(1)) has negative elgenvalues as ideatified during the process of inversion
of A(x,) using the Crout procedure. In this case the direction of move is along
an eigenvector corresponding tc 2 o zative eigenvalue, By this means a region
is located where the function is convex.'®

Algorithm 6, Fletcher-Reeves (F-R)

[1
ok . . (31
dig = caap e dtang 8,088
for i =n +1,and every n + 1 gteps d, =-g,.
Algorithm 7, Projected Newtoo-Raphson (P-N-R)
Hoop o M- CHy RH O G ) (38)
Ry = Ry G- Ry MHp VG i ) (39)

for i =n, and every n steps H, = R,

The last method investigates the effect of solving R\Y, = & exactly using
the schemes of Sec 4 in the absence of quadraticity. H,y provides the projec-
tion of y, orthogonal to (yy, y),. .., ¥, ). Every nsteps R, is an approxima-
tion to A(z)) | and a Newton-Raphson move is made.

The reset form of the algorithm is obtained by resetting H,,, for Algo-
rithms 2, 3, 4, and 7 to R and restarting, Algorithm 1 must be reset every n
steps and, in Algorithm 6, d,,, i8 reset to - g,,, always.

The linear minimization is performed by a Fibonacci search, Cubic
interpolation works well on low-order polynomial functions but does not prove
adequate for he logarithmic penalty {unctions used in the Sequential Uncon-

13
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gtratned Minimization Technique (SUMT) for which Algorithms 1 to 7, plus
several vthers, make up an experimentzl XMQVE gubroutine,'*''?

Five problems were considered. The data fur these, aud other informa-
tion, are found in App B. The numerical resuits are of coursc strictly com-
parative for each problem, In each case the fastest aigorithm is indicated by
encircled and italicized iteration mumbers.

Tazble 1 gives results for Rogenbrock’s banans-shaped valley."

flx) = 100xg - x%): v (1 - xl)z (40)

Starting point (1, ,1,) = (-1.2, 1.0); the numbe:'s quoted are iterations uatil
flx4) <1073,

TABLE 1 TABLE 2
Numerical Results of Prablem 1 Humericul Results of Problem 2
Mode Algorithm Normal Reset
Algorithm
Normal Rusat AN R - 65
—_— 4 36 47
i, P-G — 42 3 46 47
2 18 3l 4, F.P-D 40 49
3 21 37 5 MR —
4, F-P.D i9 as 6, F-R @ @
5, N-R (B @ 7, P.N-R 58
6, FR —
7, PR 36 21

Table 2 gives results for a test function credited to C, F, Wood of Westing-
house Research Laboratory:

(1) - 100(z1, - xDZ - (1 - 202 +900x, - 582 4 (1 = 1,02
’ 2 1 1 4 3 3 (41)
<10 Mry - 12 Ly D2 198 - D - 1)

This is desigred to have a nonoptimal atationary point that can cause prema-
ture convergence. Initial point (1, 15, 15,x,) = (-3,-1,-3,~1), and the rum-
ber of iterations is for f(x%} - 0713,

Table 3 shows the results for a test proclem formulated by the Shell De-
velopment Company,

5 5 08 5
f(x) = ’2 ck 2d

.y S . 3
=R ,51 2R P

14
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subject to
5200 = 1,2,

s
’2‘ a”xl,_’b‘, 1= 1,2,...,10 (42)

This is 3 lnearly constraincd problem, which for particular choices of €y Sipy
4; has 8 convex objective.’”” For ihis probiem, SUMT replaces {(x) by [(x}~r
£ 10g, g, (x) for & parameter r >0, where g (x) = 0 represents the ith in-
equality constraint, ¥ .*(s) i3 the solution of the modified problem, then
1*(r) = 1* as r ~ 0 where 1* i5 the solution to Eq 42.

TABLE 3

Numerical Results of Prohlem 3

e=1.0 e 1560072 = 244 < 1074
Algecithm

Noemal Resst Narmal Resat I Normall Reset

1, PG - 2% - 58 - 70
2 27 2 44 41 62 60
3 33 22 50 0 67 @)
4, i"-P-D 27 22 &% 40 6 %
& N-R - - -
6, b = 4 = >163 = Fail
7, P-N-R 31 @ 50 67 54

Table 4 gives results for the dual to the previous problem. here the
dual problem has a cubic objective and quadratic constrainta.®

TABLE 4

Numericzl Results of Problem 4

r=1.0 r=0.25 7 r;O.WS
Algurithm

Nermal Feset Normal Raset N mo! Reset

1, P-G —_ 120 - 1 - 211
2 134 98 195 221 R
3 136 100 220 246 .@
4, F-P-D ‘E‘@ @ 4(% 133 52% 19
S, N-R 3 - —_ —
6, F-R - > 489 —_— Fail — Fail
7. P-N-R 166 113 198 150 230 186

Finrlly, Table 5 shows the results for an intriguing problem of maximiz-
ing the area of a hexagon subject to the constraint that its maximum diameter

15




is 1. It is interesting to note that the solution is not a regular hexagon.'* The
particular formulation used had 9 variables and 13 inequality constraints, al-
though there is a certain amount of redundancy,

TABLE &
Numerical Results of Problem 5
¢= L0 r-101 re Yo e 108

Algoerithm

[ Resel Noemal Reset Normal Reset Nor mal Rassat
I, PG - i - 55 - 194 - 278
2 7 20 K2} 42 304 T a2 97
3 @ N 73 @ %
3, F-p-D 47 18 66 40 206 215 80
5. N-H 18 - €To) - () - -
6, F-R - 13 ot 55 = 194 = 278
7, P-N-R 19 23 51 58 92 91 120 101

Summary of Resulis

Tables 1 to § illustrate primarily the difficulty of selecting a meaningful
test problem. The first two problems are smooth polynomials albeit with odd-
shaped valleys. The next three problems are basically quadratics or cubics
with infinite barriers of the penalty functions against which the solutions lie.
This means that their hessian matrices A(x,) become very ill-conditioned, for
the binding constraints correspond to large eigenvalues, which tend to infindity
for fixed r as the solution x; {r) approaches the constraint.

If second derivatives are available, the Newton- Raphson method is clearly
the best for all five problems.

It seems that on smooth polynomizle the variable metric methods are
best not reszt, while on penalty functions they are best reset. Under these
conditions, the Fletcher-Powell~-Davidon algorithm is better for the former
class of problems and Algorithm 3 is better for the latter class, the penalty
functions, It is remarkable that in Table 4 Algorithms 2, 3, and in particular
4 were extremely slow when not reset,

Finally Algorithm 7, the projected Newton-Raphson, is better than the
projected gradient, showing that second-order information helps. However,

16
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the separate calculation to obtain R, exactly (Eq 39) doss not sesm to merit the
effort compared with the other schemes.

6. CONCLUBIONS

This paper has unified a series of algorithmas in & ningle ftramework.
Basically, this i¢ that variable metric schemes depend on the generalized solu-
tion to a set of linear equations, and their associated projection properties give
rige to conjugate direciions. A result of this general approach has been three
new algorithms whose comparative numerical properties are promising. Ex-
tensions to this work will be found elsewhere,’
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APPENDIXES

A. Boidered Inverss Lemma
8. Test Probiem Dats
Table
Bl. Data for Problems 3 and 4

C. Examples of Restarts

Example of Restart after a Pardal Inverse Move for the Projected
Gradient Scheme—Example of a Partial Inverse Move for the

Fletcher-Power-Davidon Scheme
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Appenidix A

BORDERED INVERSE LEMMA

A8 an application of the matrix inverse lemuma congider

H, = A(B'C)ID’

where A, B,C,D are all n xi miatrices with i <a such that they have rank i .
Let a,b,¢,d be n-vectors such that [A, a], etc, have rank i + 1 and consider

I,y = [A,al(B,6'[C, ¢ D, )
B'Cc B'¢)-l .
- a2 BT

4pplying the bordered inverse lemama to the center matrix,'*
Hy,y = lA.al([‘B‘;C"' g] +(~c'BR".1)" A [-b°CR, n)(o, 3’

where
R - (8O
A - b'{1-CRB)C

e AB'CYID' + L ARB'c + @)A1 (-b'CRD' + 4"
Ly (a-ABOTB 4 - e TCb)
! b1 -C(B'O) VR e

H

T3]

giving the basic formula used throughout this work,
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Appangix 3

TEST PROBLEM DATA

i i e rd . ede A R, s R e A L

Problem 1. Rosenbrock's Banana-Shaped Valley'
JY - 10005 - DTl - ¥

Problem 2, Wood's Functicn
[x) = 100(ry = 2P o 41 ~ v )P 4 00kn, - 5D 0 - 52
V1006 - D gy - D2 4 198ty - 2y - 1)

Problem 3. Shell Primal Problem ;

% izh

[=5 5
i ; . g > 3
. ’3.. Qe '{‘ .z.l €tz v ,}2 4

aubjecttoz,zo =, 2,...,8

"ﬁ-‘s
j}l gqr b e L2000 !

The dita far ¢, ¢, d), 4, and ¥ are given in Table Bl.
Problem 4, Shell Dual Problem

Maximize
0 \l 5 13;5 )
flx z by, - S5 €51, -2 .‘Ll 4,1
gabjeet to
10 5
‘!.)u“\l €02 X o xeqdatia 28
z0 4 - L2,....8
y, 20 4 L2,....10
21
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YABLE B!
Data for Problems 3 and 4
{n~ $)
A
A
1 2 3 4 5
£, - 18 - -3 - 18 - 12
1 30 .20 -19 2 -10
¥ 2| -2 ¥ -6 -3 32
3 -10 -6 16 & -10
4 32 -~ 31 -6 3P -0
5 =10 32 1) - 20 30
- , . Oeker b's
i ‘ 8 W 6 2 b, S
1 -1 2 0 1 0 - 40 ~ 40 - 40
a 2] o -2 o oe 2 |-z -2 -2
3 - 38 0 2 0 0 - 0.5 - 05 -1
[} 0 - 2 0 -4 -1 - 4 - 4 - 4
5 0 - 9 -2 1 - 2.8 - 4 -8 ~16
6| 2 0 -4 0 o | -1 -2 -4
7 -1 -1 -1 -1 -1 - 40 ~ 40 ~ 40
8 -l - 2 3 -2 -1 -60 - 60 - G0
9 1 2 1 4 S 5 2.5 2.5
10 1 1 1 1 1 1 ] 1

Problem 5. Hexagon Problem
Maximize f(x) the area of a hexagon where,

{6} = %lxgng - xgky + X380 = Xgkg + Kgly = Xghql

- -gubject to constraints that the maximum diameter is unity
1> xg [ x%

1248

1> (;g . xg)

12 xf . (12 . ‘9)2

Vatayooxg¥ e lny - xg)?

1 (x) - 17)2 e lxy - xa)z

Loty - 15)2 v xy "6)2

1rley - 17)2 [AYH 10)2

1. x; v lag - xo)z

22
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L g,

and that the figure dexeribed 1o & nondegenerste hexagon
Bybg - sy 20
k33920
fg7g 20
fyly - Rgry 2 0

1g20

The {igure described hae one dizmeoter on the vertieat axis, The problem ie
not expressed in its simplest lorm.
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Appandix €

EXAMPLES OF RESTARTS

Example of Restart after a Partial Inverse Move for
the Projected Gradient Scheme

Suppose n =2 and A and b are

21 0 i
A =<l 1 ;>‘ b-(l)
01 l

A partial inverse of the leading 2 x 2 subruatrix of A has the form

i -1 0
R=f-1 2 u) - Hy
c o ¢

This is used a8 the starting matrix,
Iteration O, the initial point

o & Yo 50
10 3
10 il
10 4]

Iteration 1, after the partial inverse step

nooy Yo 5o

10 0 3l 0

~-21 Q -3 231

10 10 -3l ]
24
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H is nuw reset to

1o o l(21
H,,(glu)—(z l)ll
0 1 1

e 173 1/6
- {-1/3 273 -1/3

76 -1/ 1/6

'R

Iteration 2, after one projected gradient stage

b2 W y2
0 (i 0
-1 0 s
0 0 -0

by
w
L]
A
[~ = =1
o0 o

i
-19
20
-1

after updating using H, y, above.
To check, g = Az* + b ahould be zero.

71 o0\ /1
01 o/ \1 2
This completes the problem afier two steps instead of the normal three.

Example of a Partial Inverse Move for the
Fletcher- Powell-Davidon Scheme

Suppose for n =2, A and b are given by
21 0 1
A-(l 1 1)- 1)
013 ]

A partial inverse of the leading 2 x 2 submatrix gives
1 -1 0
R« (—l 2 0)- Hg
0 00

5 & Yo %

Start, {teraton 0

10 a

10 3

LY
25




Iteration 1, after the partial inverse step

I 8 Yo

10 U =31
-21 o -3

10 10 ~31 U

H, is now reset to

: \ ey
(IR Y

7/6 -4/3 1/6
= ('4/3 8/6 -1/3)

176 -1/3  1/6
Iteration 2
2 % M S2
0 0 0 -0
-1 0 o 20
0 0 -10 -0

2 43 1
Hy = [¢ 6 -2
1 -2 1

Check on the inverse

[T

G A o e $S

21 2 -3 1\ /L 0o
Au:.(a 1 1(-3 6—2)1 ono)
01 1 -2 1 00 |

This completes the problem after two steps instead of the normal three,
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